
Highly Scalable Discriminative
Spam Filtering

Michael Brückner

3.2 billion email accounts.

70% spam & phishing emails; >10% undetected.

2.4 billion social networking accounts.

2.6 billion IM accounts.

1 billion WhatsApp
messages per day.

Why?

Problem Statement

Discriminative Classifiers

Data Provisioning & Preprocessing

Text Feature Extraction

Hashing Trick

Large-scale Learning Algorithms

Parallelized Stochastic Gradient Descent

(Alternatives?)

Outline

Given:
Sample of n messages with class labels
yi = +1 (spam) or yi = -1 (non-spam).

Feature mapping: message → feature vector xi ∈ Rm.

Objective:
Decision function f so that

y = sign f(x)

holds for future messages.

Problem Statement

Approach: Find function f which minimizes
Empirical classification error (loss):

R[f] = Σi l(yi , f(xi))

and

Model complexity (regularizer):

Ω[f] = || f ||
H

Discriminative Classifier

Solve for linear decision function f(x) = < x , w >:

minf Σi l(yi , f(xi)) + λΩ[f]

Linear Discriminative
Classifier

Model Loss function l Regularizer Ω

Perceptron max(0, -y f(x)) -

SVM max(0, 1 - y f(x))

Logistic Reg. log(1 + exp(-y f(x)))

Linear Reg. (y - f(x))2

Lasso (y - f(x))2

1 /2∥w∥2
2

1 /2∥w∥2
2

1 /2∥w∥2
2

∥w∥1

Task: Continuously collection of labeled data.

Spam messages:

From blacklisted IPs, honeypots, user reports, etc.

Non-spam messages:

Public sources (newsletters, moderated groups &
bulletin boards, Enron email corpus etc.)

Two-way communication.

Distributed storage.

Data Provisioning

Word-based feature extraction:

Parsing & tokenization (e.g. using Apache
OpenNLP, Lucene).

No stemming.

Character-based feature extraction:

Character n-grams (shingles).

Text Feature Extraction

Feature mapping:
Binary Bag of Words, Orthogonal Sparse Bigrams,
Sparse Binary Polynomial Hashing.

No term frequencies (TF) or TF-IDF.

L2-Normalization per instance:

No explicit feature selection.

Text Feature Extraction

x '= 1
∥x∥2

x

Multiple binary features are combined to one.

Example:

You have exceeded the storage limit ...

 6 3 5 1 9 8

Binary Bag of Word representation:

x = [1 0 1 0 1 1 0 1 1 0]T

Hashing Trick

You have exceeded the storage limit ...

 6 3 5 1 9 8

Feature mapping for Binary Bag of Word:

 x = (message) = = φ

Hashing Trick

contains the?
contains hello?
contains have?
contains world?
contains exceeded?
contains You?
...

1
0
1
0
1
1
...

You have exceeded the storage limit ...

 6 3 5 1 9 8

Feature mapping with hashing:

x = (message) = = φ

Hashing Trick

contains the or You?
contains hello or limit?
contains have or storage?
contains world or young?
contains exceeded or me?

1
1
1
0
1

Distributed & iterative methods.

Given are n message-label pairs (xi , yi).

Objective function for fw(x) = <x,w>:

Solve for w of decision function fw:

Large-scale
Learning Algorithms

min
w

c(w)

c(w)=∑
i=1

n

l (yi ,〈 xi , w 〉)+ λ 1
2
∥w∥2

2

Gradient:

Example SVM:

Initialize w to all-zeros vector.

Repeat until w converged:

Gradient Descent

c' (w)=∑
i=1

n

l ' (yi , 〈 xi ,w〉) xi+ λ w

l ' (y , z)= 0 if yz≥1
− y if yz< 1

w ←w−η c' (w)

Stochastic Gradients:

where .

Initialize w to all-zeros vector.

Repeat until w converged:

Randomly draw and update

Stochastic Gradient
Descent (SGD)

ci ' (w)=l ' (yi , 〈 xi , w〉) xi+
λ
n

w

w ←w−η ci ' (w)

c' (w)=∑
i=1

n

ci ' (w)

i∈{1,... , n}

Randomly distribute n message-label pairs.

T > n / N pairs to each of the N nodes.

SGD on each machine j to compute .

Average the N computed weight vectors:

Parallelized Stochastic
Gradient Descent

w=
1
N ∑

j=1

N

w(j)

w(j)

Given: N nodes, every node has access to
all data.

Large-scale Bayes Point Machine:

For each node: solve Perceptron with random order of
training data.

Average (normalized) Perceptron solutions:

Alternatives:
Bayes Point Machine

w=
1
N ∑

j=1

N
w(j)

∥w(j)∥2

Given: N weakly connected nodes, potentially
non-randomly distributed data.

Idea: Decompose minimization problem into
coupled sub-problems j = 1, ..., N.

Alternatives:
Consensus Propagation

min ∑
i∈S (j)

l (y i , 〈 xi ,w(j)〉) + λ 1
2 N

∥w(j)∥2
2

s.t. w(j)=w(k) ∀k∈ neighbors of node j

As many data as possible for training
with as many attributes as possible.

Implicit feature reduction by hashing trick.

Large-scale discriminative classifier based on
(parallelized) stochastic gradient descent.

Summary

Joshua Attenberg et al. Collaborative Email-Spam Filtering
with the Hashing-Trick. CEAS, 2009.

Aditya Krishna Menon. Large-Scale Support Vector
Machines: Algorithms and Theory. 2009.

Martin Zinkevich et al. Parallelized Stochastic Gradient
Descent. NIPS, 2010.

Ralf Herbrich and Thore Graepel. Large Scale Bayes Point
Machines. NIPS, 2000.

Pedro A. Forero et al. Consensus-Based Distributed
Support Vector Machines. JMLR, 2010.

Neal Parikh and Stephen Boyd. Graph Projection Block
Splitting for Distributed Optimization. 2012.

References

Given: N nodes, data is heavily distributed.

E.g. attributes of messages are distributed.

Idea:

Block-wise decomposition of the minimization
problem.

Applying alternating direction method of multipliers
(ADMM).

Alternatives:
Block Splitting

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

