

Highly Scalable Discriminative Spam Filtering

Michael Brückner

Why?

- 3.2 billion email accounts.
 - 70% spam & phishing emails; >10% undetected.
- 2.4 billion social networking accounts.
- 2.6 billion IM accounts.
- 1 billion WhatsApp messages per day.

Outline

- Problem Statement
 - Discriminative Classifiers
- Data Provisioning & Preprocessing
 - Text Feature Extraction
 - Hashing Trick
- Large-scale Learning Algorithms
 - Parallelized Stochastic Gradient Descent
 - (Alternatives?)

Problem Statement

- Given:
 - Sample of *n* messages with class labels $y_i = +1$ (spam) or $y_i = -1$ (non-spam).
 - Feature mapping: message → feature vector $x_i \in \mathbb{R}^m$.
- Objective:
 - Decision function f so that

 $y = \operatorname{sign} f(x)$

holds for <u>future</u> messages.

Discriminative Classifier

Approach: Find function f which minimizes

• Empirical classification error (loss):

$$R[f] = \Sigma_i \, l(y_i, f(x_i))$$

and

• Model complexity (regularizer): $\Omega[f] = \|f\|_{_{H}}$

Linear Discriminative Classifier

Solve for linear decision function $f(x) = \langle x, w \rangle$: $\min_{f} \Sigma_{i} l(y_{i}, f(x_{i})) + \lambda \Omega[f]$

Model	Loss function l	Regularizer Ω
Perceptron	$\max(0, -y f(x))$	-
SVM	$\max(0, 1 - y f(x))$	$1/2 \ w\ _2^2$
Logistic Reg.	$\log(1 + \exp(-yf(x)))$	$1/2 \ w\ _2^2$
Linear Reg.	$(y - f(x))^2$	$1/2 \ w\ _2^2$
Lasso	$(y - f(x))^2$	$\ w\ _1$

Data Provisioning

- Task: Continuously collection of <u>labeled</u> data.
- Spam messages:
 - From blacklisted IPs, honeypots, user reports, etc.
- Non-spam messages:
 - Public sources (newsletters, moderated groups & bulletin boards, Enron email corpus etc.)
 - Two-way communication.
- Distributed storage.

Text Feature Extraction

- Word-based feature extraction:
 - Parsing & tokenization (e.g. using Apache OpenNLP, Lucene).
 - No stemming.
- Character-based feature extraction:
 - Character n-grams (shingles).

Text Feature Extraction

Feature mapping:

- Binary Bag of Words, Orthogonal Sparse Bigrams, Sparse Binary Polynomial Hashing.
- No term frequencies (TF) or TF-IDF.
- L2-Normalization per instance:

$$x' = \frac{1}{\|x\|_2} x$$

No explicit feature selection.

Hashing Trick

- Multiple binary features are combined to one.
- Example:

You have exceeded the storage limit ...

 6
 3
 5
 1
 9
 8

• Binary Bag of Word representation: $x = [1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0]^{T}$

Hashing Trick

You have exceeded the storage limit ... 6 3 5 1 9 8

Feature mapping for Binary Bag of Word:

 $x = \varphi(\text{message}) =$

contains the?1contains hello?0contains have?1contains world?0contains exceeded?1contains You?1

Hashing Trick

You have exceeded the storage limit ... 6 3 5 1 9 8

Feature mapping with <u>hashing</u>:

$$x = \varphi(\text{message}) =$$

contains the
contains helloor You?
or limit?1
1
1
1contains have
contains worldor storage?=1
1
0
1contains exceeded or me?1

Large-scale Learning Algorithms

- Distributed & iterative methods.
- Given are *n* message-label pairs (x_i, y_i) .
- Objective function for $f_w(x) = \langle x, w \rangle$: $c(w) = \sum_{i=1}^{n} l(y_i, \langle x_i, w \rangle) + \Box \frac{1}{2} ||w||_2^2$
- Solve for w of decision function f_w:

$$\min_{w} c(w)$$

Gradient Descent

- Gradient: $c'(w) = \sum_{i=1}^{n} l'(y_i, \langle x_i, w \rangle) x_i + \Box w$ • Example SVM: $l'(y, z) = \begin{cases} 0 & \text{if } yz \ge 1 \\ -y & \text{if } yz < 1 \end{cases}$
- Initialize w to all-zeros vector.
- Repeat until w converged:

$$w \leftarrow w - \Box c'(w)$$

Stochastic Gradient Descent (SGD)

• Stochastic Gradients: $c_i'(w) = l'(y_i, \langle x_i, w \rangle) x_i + \frac{\prod}{n} w$

where
$$c'(w) = \sum_{i=1}^{n} c_i'(w)$$

- Initialize w to all-zeros vector.
- Repeat until w converged:
 - Randomly draw $i \in \{1, ..., n\}$ and update

$$w \leftarrow w - \Box c_i'(w)$$

Parallelized Stochastic Gradient Descent

- <u>Randomly</u> distribute n message-label pairs.
 - T > n / N pairs to each of the N nodes.
- SGD on each machine j to compute $w^{(j)}$.
- Average the N computed weight vectors:

$$w = \frac{1}{N} \sum_{j=1}^{N} w^{(j)}$$

Alternatives: Bayes Point Machine

- Given: N nodes, every node has access to all data.
- Large-scale Bayes Point Machine:
 - For each node: solve Perceptron with random order of training data.
 - Average (normalized) Perceptron solutions:

$$w = \frac{1}{N} \sum_{j=1}^{N} \frac{w^{(j)}}{\|w^{(j)}\|_2}$$

Alternatives: Consensus Propagation

- Given: N weakly connected nodes, potentially non-randomly distributed data.
- Idea: Decompose minimization problem into coupled sub-problems j = 1, ..., N.

$$\min \sum_{i \in S^{(j)}} l(y_i, \langle x_i, w^{(j)} \rangle) + \Box \frac{1}{2N} ||w^{(j)}||_2^2$$

s.t. $w^{(j)} = w^{(k)} \quad \forall k \in neighbors of node j$

- As many data as possible for training with as many attributes as possible.
- Implicit feature reduction by hashing trick.
- Large-scale discriminative classifier based on (parallelized) stochastic gradient descent.

References

- Joshua Attenberg et al. Collaborative Email-Spam Filtering with the Hashing-Trick. CEAS, 2009.
- Aditya Krishna Menon. Large-Scale Support Vector Machines: Algorithms and Theory. 2009.
- Martin Zinkevich et al. Parallelized Stochastic Gradient Descent. NIPS, 2010.
- Ralf Herbrich and Thore Graepel. Large Scale Bayes Point Machines. NIPS, 2000.
- Pedro A. Forero et al. Consensus-Based Distributed Support Vector Machines. JMLR, 2010.
- Neal Parikh and Stephen Boyd. Graph Projection Block Splitting for Distributed Optimization. 2012.

Alternatives: Block Splitting

- Given: N nodes, data is heavily distributed.
 - E.g. attributes of messages are distributed.
- Idea:
 - Block-wise decomposition of the minimization problem.
 - Applying alternating direction method of multipliers (ADMM).