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3.2 billion email accounts.

70% spam & phishing emails; >10% undetected.

2.4 billion social networking accounts.

2.6 billion IM accounts.

1 billion WhatsApp 
messages per day.

Why?



Problem Statement

Discriminative Classifiers

Data Provisioning & Preprocessing

Text Feature Extraction

Hashing Trick

Large-scale Learning Algorithms

Parallelized Stochastic Gradient Descent

(Alternatives?)

Outline



Given:
Sample of n messages with class labels
yi = +1 (spam) or yi = -1 (non-spam). 

Feature mapping: message → feature vector xi  ∈ Rm.

Objective:
Decision function f so that

y = sign f(x) 

holds for future messages.

Problem Statement



Approach: Find function f which minimizes
Empirical classification error (loss):

 

R[f] = Σi l(yi , f(xi))

and 

Model complexity (regularizer):

Ω[f] = || f ||
H

Discriminative Classifier



Solve for linear decision function f(x) = < x , w >:

minf  Σi l(yi , f(xi)) + λΩ[f]

Linear Discriminative
Classifier

Model Loss function l Regularizer Ω

Perceptron max(0, -y f(x)) -

SVM max(0, 1 - y f(x))

Logistic Reg. log(1 + exp(-y f(x)))

Linear Reg. (y - f(x))2

Lasso (y - f(x))2

1 /2∥w∥2
2

1 /2∥w∥2
2

1 /2∥w∥2
2

∥w∥1



Task: Continuously collection of labeled data.

Spam messages:

From blacklisted IPs, honeypots, user reports, etc.

Non-spam messages:

Public sources (newsletters, moderated groups & 
bulletin boards, Enron email corpus etc.)

Two-way communication.

Distributed storage.

Data Provisioning



Word-based feature extraction:

Parsing & tokenization (e.g. using Apache 
OpenNLP, Lucene). 

No stemming.

Character-based feature extraction:

Character n-grams (shingles).

Text Feature Extraction



Feature mapping:
Binary Bag of Words, Orthogonal Sparse Bigrams, 
Sparse Binary Polynomial Hashing.

No term frequencies (TF) or TF-IDF.

L2-Normalization per instance:

No explicit feature selection.

Text Feature Extraction

x '= 1
∥x∥2

x



Multiple binary features are combined to one.

Example:

You have exceeded the storage limit ...

  6       3             5           1          9            8

Binary Bag of Word representation:

x = [1 0 1 0 1 1 0 1 1 0]T

Hashing Trick



You have exceeded the storage limit ...

  6       3             5           1          9            8

Feature mapping for Binary Bag of Word:

   x = (message) =                                        = φ

Hashing Trick

contains the?
contains hello?
contains have?
contains world?
contains exceeded?
contains You?
...

1
0
1
0
1
1
...



You have exceeded the storage limit ...

  6       3             5           1          9            8

Feature mapping with hashing:

x = (message) =                                                          =        φ
                               

Hashing Trick

contains the      or You?
contains hello    or limit?
contains have     or storage?
contains world    or young?
contains exceeded or me?

1
1
1
0
1



Distributed & iterative methods.

Given are n message-label pairs (xi , yi).

Objective function for fw(x) = <x,w>:

Solve for w of decision function fw:

Large-scale
Learning Algorithms

min
w

c(w)

c(w)=∑
i=1

n

l ( yi ,〈 xi , w 〉)+ λ 1
2
∥w∥2

2



Gradient:

Example SVM: 

                                 

Initialize w to all-zeros vector.

Repeat until w converged:

Gradient Descent

c' (w)=∑
i=1

n

l ' ( yi , 〈 xi ,w〉) xi+ λ w

l ' ( y , z)= 0 if yz≥1
− y if yz< 1

w ←w−η c' (w)



Stochastic Gradients:

where                      .

Initialize w to all-zeros vector.

Repeat until w converged:

Randomly draw                  and update

Stochastic Gradient
Descent (SGD)

ci ' (w)=l ' ( yi , 〈 xi , w〉) xi+
λ
n

w

w ←w−η ci ' (w)

c' (w)=∑
i=1

n

ci ' (w)

i∈{1,... , n}



Randomly distribute n message-label pairs.

T > n / N pairs to each of the N nodes.

SGD on each machine j to compute      .

Average the N computed weight vectors:

Parallelized Stochastic 
Gradient Descent

w=
1
N ∑

j=1

N

w( j)

w( j)



Given: N nodes, every node has access to 
all data. 

Large-scale Bayes Point Machine:

For each node: solve Perceptron with random order of 
training data.

Average (normalized) Perceptron solutions:

Alternatives:
Bayes Point Machine

w=
1
N ∑

j=1

N
w( j)

∥w( j )∥2



Given: N weakly connected nodes, potentially 
non-randomly distributed data. 

Idea: Decompose minimization problem into 
coupled sub-problems j = 1, ..., N.

Alternatives:
Consensus Propagation

min ∑
i∈S ( j)

l ( y i , 〈 xi ,w( j)〉) + λ 1
2 N

∥w( j)∥2
2

s.t. w( j)=w(k ) ∀k∈ neighbors of node j



As many data as possible for training
with as many attributes as possible.

Implicit feature reduction by hashing trick.

Large-scale discriminative classifier based on 
(parallelized) stochastic gradient descent.

Summary



Joshua Attenberg et al. Collaborative Email-Spam Filtering 
with the Hashing-Trick. CEAS, 2009.

Aditya Krishna Menon. Large-Scale Support Vector 
Machines: Algorithms and Theory. 2009.

Martin Zinkevich et al. Parallelized Stochastic Gradient 
Descent. NIPS, 2010.

Ralf Herbrich and Thore Graepel. Large Scale Bayes Point 
Machines. NIPS, 2000.

Pedro A. Forero et al. Consensus-Based Distributed 
Support Vector Machines. JMLR, 2010.

Neal Parikh and Stephen Boyd. Graph Projection Block 
Splitting for Distributed Optimization. 2012.

References



Given: N nodes, data is heavily distributed.

E.g. attributes of messages are distributed.

Idea:

Block-wise decomposition of the minimization 
problem.

Applying alternating direction method of multipliers 
(ADMM).

Alternatives:
Block Splitting
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